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■ There is a universal formal group law.

■ There is a universal complex-oriented ring spectrum.

■ Every complex-oriented ring spectrum determines a formal
group law.

■ A formal group law creates a spectrum under a certain
condition (if time permits).
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Universal formal group law

A formal group law over a commutative ring R can be written as a
formal sum f (x , y) =

∑
cijx

iy j .

The identities

■ f(x,0)=f(0,x)=x,
■ f(x,y)=f(y,x),
■ f(x,f(y,z))=f(f(x,y),z)

are equivalent to

■ ci ,0 = c0,i = 0 if i ̸= 1, and c1,0 = c0,1 = 1,
■ cij = cji ,
■ more polynomial equations that the coefficients cij satisfy for

the associativity.

Definition
The Lazard ring is L := Z[cij ]/Q, where Q is the ideal generated
by the these polynomials.
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Universal formal group law

We have the formal group law ℓ(x , y) :=
∑

cijx
iy j in L. This is

universal in the following sense:

Proposition

Let f be a formal group law over a commutative ring R. Then
there exists a unique map L → R sending ℓ to f .

A useful description of L:

Theorem (Lazard)

There is an isomorphism L ∼= Z[t1, t2, . . .].

In particular, to write down a formal group law over a commutative
ring R, one just needs to select a countable sequence of elements
of R. In particular, formal group laws exist in abundance.
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Complex-oriented cohomology theory

Definition
A spectrum is a sequence of pointed spaces

E := (E0,E1, . . .)

equipped with an equivalence Ei ≃ ΩEi+1 for every i , where
Ω := Map(S1,−).

Every spectrum E yields a homology theory

Ei (X ) := [S i ,X ∧ E ]

and a cohomology theory

E i (X ) := [X ,S i ∧ E ]

for space X . We set E∗ := E∗(pt) and E ∗ := E ∗(pt). Then
E∗ ∼= E ∗ with reverse grading.
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Complex-oriented cohomology theory

Definition
A ring spectrum E is a spectrum equipped with a multiplication
E ∧ E → E that is associative and unital up to homotopy.

A ring structure on a spectrum E yields a graded ring structure on
E ∗(X ).

Definition
A ring spectrum E is homotopy commutative if E ∧ E → E is
commutative up to homotopy.

A homotopy commutative ring spectrum E yields a graded
commutative ring structure on E ∗(X ).
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Complex-oriented cohomology theory

The choice of a base point of CP1 ∼= S2 gives a canonical
decomposition E 2(CP1) ∼= E 0(pt)⊕ E 2(pt).

Let t be the element of E 2(CP1) corresponding the unit of E 0(pt).
Consider the inclusion CP1 → CP∞.

Definition
A complex-orientation on a homotopy commutative ring spectrum
E is an element t ∈ E 2(CP∞) that maps to t ∈ E 2(CP1).
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Complex-oriented cohomology theory

Example

For a commutative ring R, the Eilenberg-MacLane spectrum HR is
a homotopy commutative ring spectrum. For space X , we have

HR∗(X ) = H∗(X ;R).

The map H2(CP∞;R) → H2(CP1;R) is an isomorphism, so HR is
complex-oriented.

Example

The element t := [O(−1)]− 1 ∈ K 0(CP∞) ∼= K 2(CP∞) is a
complex-orientation on the complex K -theory spectrum KU, where
O(−1) is the tautological complex line bundle over CP∞.
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Complex-oriented cohomology theory

Theorem
Let E be a complex-oriented ring spectrum. For a space X , we
have

E ∗(X × CP∞) ∼= E ∗(X )⊗ Z[[t]].

Proof.
Similar to the computation of H∗(CP∞;Z).
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Complex-oriented cohomology theory

Using CP∞ ∼= BS1, we have the multiplication
CP∞ × CP∞ → CP∞, which induces

E ∗(CP∞) → E ∗(CP∞ × CP∞).

Together with the above theorem, we obtain

E ∗[[t]] → E ∗[[x , y ]].

Let f (x , y) denote the image of t under this map.
Then f is a formal group law since the multiplication on CP∞

satisfies the commutative monoid axiom.

Slogan

Every complex-oriented ring spectrum determines a formal group
law.
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Complex bordism

Definition
The Thom space of a rank n complex vector bundle E → X
(equipped with a metric) is

Th(E) := D(E)/S(E),

where D(E) and S(E) are the unit disk bundle and unit sphere
bundle.



Complex bordism

Theorem (Thom isomorphism)

For a complex-oriented ring spectrum E, we have

E ∗(X ) ∼= E ∗+2n(Th(E)).

Proof.
Use Th(E) ≃ P(E ⊕ O)/P(E) and the projective bundle
formula.
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Complex bordism

Definition
For a topological group G , the classifying space of G is the
geometric realization of the simplicial space

· · ·→→
→→G × G→→

→G ⇒ pt.

Definition
For a pointed space X , its infinite suspension Σ∞X is the
spectrum associated with (X ,S1 ∧ X ,S2 ∧ X , . . .).
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Complex bordism

Definition
Consider the classifying space BU(n) of the unitary group U(n)
and its tautological bundle Tn.
The bordism spectrum is MU := colimMU(n), where
MU(n) := Ω2nΣ∞Th(Tn).

Proposition

MU is a complex-oriented ring spectrum.

Proof.
For the ring structure, construct MU(m) ∧MU(n) → MU(m + n).
The canonical map MU(1) → MU yields a class
t ∈ MU2(Th(T1)) ∼= MU2(P∞/pt).
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Complex bordism

Theorem
Let E be a homotopy commutative ring spectrum. Then there is a
one-to-one correspondence between complex-orientations on E and
ring maps MU → E.

Proof.
Given a complex-orientation on E , we can naturally associate an
element of E 0(MU), which yields a map MU → E . Show that this
is indeed a ring map.
On the other hand, a ring map MU → E produces a
complex-orientation on E from the complex-orientation on MU.
Show that these two constructions are inverses to each other.

Slogan

MU is the universal complex-oriented ring spectrum.
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Comparison of two universalities

We have the formal group law on MU∗, which induces a map
L → MU∗.

Theorem (Quillen)

The induced map L → MU∗ is an isomorphism.

Proof.
Even though the theorem is conceptual, the proof is computational.
Step 1. Show that L ∧ HQ → MU∗ ∧ HQ is an isomorphism by
computing H∗(MU,Z).
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Theorem (Quillen)

The induced map L → MU∗ is an isomorphism.

Proof.
Step 2. The cosimplicial diagram

MU ∧ HFp ⇒ MU ∧ HFp ∧ HFp→→
→ · · ·

yields the Adams spectral sequence

E ij
1 = Hi (MU;Fp)⊗Fp (A∨)⊗j ⇒ (πi+jMU)∧p ,

where A∨ := π∗(HFp ⊗HFp) denotes the dual Steenrod algebra.
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Theorem (Quillen)

The induced map L → MU∗ is an isomorphism.

Proof.
Step 3. Show E ∗∗

2
∼= Fp[c0, c1, . . .], where ci has total degree 2i . In

particular, the Adams spectral sequence degenerates at the second
page by the degree consideration.

Step 4. Show (π∗MU)∧p
∼= Zp[u1, u2, . . .].

Step 5. Analysis the induced map
L∧p

∼= Zp[t1, t2, . . .] → Zp[u1, u2, . . .], and show that this is indeed
an isomorphism.
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Landweber exact functor theorem

For a prime p, let vn ∈ L be the coefficient of tp
n
in the p-series

[p](t), where [0](t) = 0 and [m](t) = ℓ([m − 1](t), t) for m ≥ 1.

Theorem (Landweber exact functor theorem)

Let M be a graded L-module. If the sequence p, v1, v2, . . . is
M-regular every prime p, then there exists a spectrum E such that

E∗(X ) ∼= MU∗(X )⊗L M

for every space X .
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Landweber exact functor theorem

Proof.
We need to show that E∗ is a homology theory. The problematic
Eilenberg-Steenrod axiom is as follows:

· → En(A) → En(X ) → En(X ,A) → En−1(A) → · · ·

is exact for CW pair (X ,A) and integer n.
If M were flat over L, then there would be no problem. However, L
is an infinite polynomial ring, and M is usually not flat over L.
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Proof.
The crucial idea is to consider the moduli stack of formal groups
MFG := Spec(L)/G+ with

G+(R) := {g ∈ R[[x ]] : g(x) = b1x + b2x
+ · · · , b1 ∈ R×}

for L-algebra R.

Then show that the condition in the statement is equivalent to the
condition that M is a flat MFG-module.

A graded commutative ring R with a formal group law is an
L-algebra and hence an L-module.

Slogan

We can create E from a formal group law under a certain
condition.
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Example

Consider Z with the formal group law f (x , y) := x + y . Then
[p](t) = pt, so vn = 0 for n ≥ 1. Hence p, v1 is not Z-regular.
We cannot apply the Landweber exact functor theorem to this
example.

Example

We get singular homology with Q-coefficients from the Landweber
exact functor theorem:
It is known that

H∗(X ;Q) ∼= MU∗(X )⊗L Q.
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Example

We have the formal group law over Z[β, β−1] with |β| = −2 given
by

f (x , y) := x + y + βxy .

We get K-theory from the Landweber exact functor theorem:
Conner and Floyd proved that there is an isomorphism

K∗(X ) ∼= MU∗(X )⊗L Z[β, β
−1].

Example

We get the Brown-Peterson specturm BP from the Landweber
exact functor theorem with

M := Z(p)[t1, t2, . . .]/(ti )i+1̸=pk .
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